Simple setup and operation

No risk
of controller
skipping
phases

Effectively Delays Over-Saturation

High-speed IP comm.

CLEARS CONGESTION after peak period

Proven and reliable

Windows 10/11

Windows Server 2016+

Reacts to incident conditions

Userdefinable parameters Fully compatible
with transit priority,
preemption,
and pedestrian
operations

Adjusts to long-term changes in traffic patterns

25% FEWER STOPS

Balances Progression and Safety

Contacts

Seth Searle
\$\scale 303.481.0450
\$\scale \seth.searle@kimley-horn.com
\$\scale \square 303.481.0450
\$\scale \square 303.481.0450

»» Kadence

A Kimley-Horn Software Solution

Adaptive Signal Control, Now With:

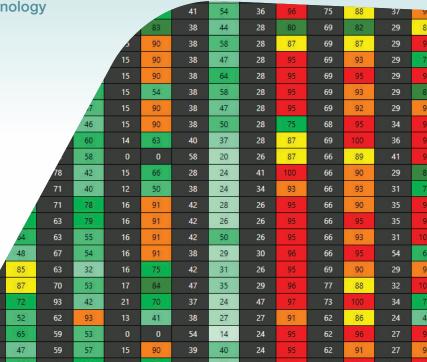
Deep Learning Queue Management

Safety Adaptive

The Kadence system optimizes traffic signal timing to balance performance benefits for safety and efficiency. Kadence is a powerful tool in a traffic engineer's toolbox, handling fluctuations in demand and short- and long-term changes in land use and traffic patterns. Kadence dashboards and signal performance measures also allow traffic engineers to provide enhanced consulting services.

Key Features

- Use any field controller and detection technology
- System learns over time
- Highly scalable and cost effective
- Signal system performance measures
- Optimizations consider both traffic flow and safety


Real-Time Signal Parameter Tuning

- Cycle
- > Splits
- Offsets
- Sequence
- > TOD Schedule

Kimley» Horn

Expect More. Experience Better.

COMPATIBILITY AND SETUP

»Kadence **Meets All USDOT Model**

Systems Engineering

Requirements for ASCT

Implementation

States/Provinces where Kimley-Horn has deployed Kadence signal system projects

Kadence is *fully integrated* into Kimley-Horn's Smart Cities Ecosystem and is *fully compatible* with KITS and all Traction Modules

Signal Controller Types

- ➤ Econolite ASC/3, Cobalt, and EOS
- Siemens SEPAC NTCIP
- McCain 233/Omni

- Q-Free
- ➤ LACO4E
- Fourth Dimension D4 > Caltrans TSCP
 - Siemens NextPhase
 - ➤ Any other NTCIP 1202 compliant controller

Kadence Detector Requirements

Kadence supports all detection technologies as long as the detection system interfaces directly with the traffic signal controller.

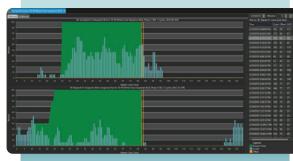
For optimal operation,

lane-by-lane detection

should be provided at the stop bar of each adaptive-enabled intersection.

Lane-by-lane "Flow Profiling" detectors are also recommended where queue measurements and offset adjustments are desired, with three unique placement configurations supported by Kadence.


Flow Profile Detector


METHODOLOGY AND PERFORMANCE

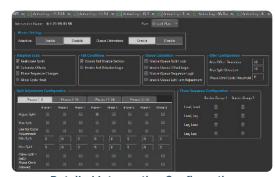
Adaptive Control Methodology

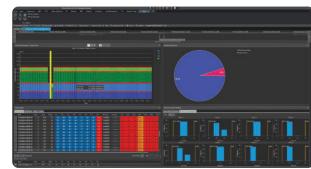
- Data-driven parameter tuning
- No calibration
- > No specific detector length
- No field hardware

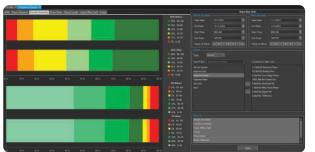
Action Log

Arrivals On Green

Adaptive Control Process


- > Poll controllers for phase and detector data
- ➤ Calculate new splits, cycle, offset, sequence
- Download new pattern data to controllers
- > Controller responsible for all traffic functions
- ➤ Kadence does not override operation with holds/force off
- > Fully compatible with transit priority, emergency vehicle preemption, and all pedestrian modes
- Where speed sensor data is available, safety-based adjustments to mitigate excessive speeding can be enabled


Modern **Graphical** User Interface


Status Map

Detailed Intersection Configuration

Historical Intersection Timing Report

Before and After Corridor Summary

